我室二维材料化学与能源应用研究组(508组)吴忠帅研究员团队和大连交通大学王韶旭教授团队合作在低温高压水系/有机混合电解液开发方面取得新进展,开发出了一种具有宽电化学稳定窗口、耐低温、低成本的混合电解液,构筑出耐低温高性能微型超级电容器。
水系电解质具有本征安全的特性,因此水系微型储能器件在便携式微型电子设备和规模化储能等领域具有广阔的应用前景。然而由于水系电解液的电化学稳定窗口过窄以及较高凝固点引起的易结冰等问题,导致该体系储能器件能量密度较低、低温下电化学性能衰减严重,限制了其进一步应用。高浓盐电解液的应用有效拓宽了水系电解质的电化学稳定窗口,并且也具有优异的抗冻性能,然而这会受到盐溶解度的限制以及提高使用成本,并且通常伴随着粘度提高和离子电导率降低的问题。
本文通过在水系电解液中引入CaCl2和乙二醇添加剂,获得了一种中等浓度的(3.86 m CaCl2+1 m LiCl)宽电位窗口、耐低温电解液。实验和理论分析表明,CaCl2的引入可最大限度地减少具有强氢键的水分子的数量,而乙二醇的添加则可减少钙离子第一溶剂化壳层中H2O分子的数量,并破坏水分子之间形成的氢键网络,从而使所设计的混合电解液具有3.5 V的宽电化学稳定性窗口和低于–120 ℃的凝固点。此外,基于此电解液所构筑的微型超级电容器可提供1.6 V的高电压,在–40 °C时的容量保持率是室温下的62%,并且具有优异的循环性能,在此温度下运行两万圈后,容量保持率达98.5%。此项研究工作为低温储能器件电解液的设计提供了思路。
该工作以“A low-cost moderate-concentration hybrid electrolyte of introducing CaCl2 and ethylene glycerol enables low-temperature and high-voltage micro-supercapacitors”为题,发表在《先进功能材料》(Advanced Functional materials)上。该工作的第一作者是我室508组联合培养硕士研究生杨恩典和副研究员师晓宇。上述工作得到了国家自然科学基金、所创新基金等项目的资助。(文/图 杨恩典、师晓宇)
文章链接:https://doi.org/10.1002/adfm.202313395