我室碳基资源电催化转化研究组(523组)在一氧化碳(CO)电解制燃料和化学品方面取得新进展,利用催化剂纳米颗粒间距离调控产物选择性的新策略,实现了工业级电流密度下高选择性CO电解制乙酸。
CO电解是串联电解CO2制多碳产物(CO2-CO-C2+)反应路线中的重要环节,但当前CO电解难以在工业级电流密度下高选择性生成单一C2+产物。目前的产物选择性调控策略主要集中在原子/纳米尺度上的催化活性位结构设计。另一方面,介观尺度上的物质传输过程会显著影响催化活性中心附近的反应微环境,对产物选择性的调控同样至关重要,但该问题在以往研究中经常被忽视。
本工作中,团队通过机械混合不同比例的铜纳米颗粒与导电炭黑这一简易方法,构建了一系列铜纳米颗粒间距离可调(0至226 nm)的模型气体扩散电极,并应用于工业级电流密度下的碱性CO电解。研究发现,随着铜纳米颗粒间距离增加,乙烯选择性不断降低,同时乙酸选择性迅速增加,逐渐成为主导的反应产物。数值计算结果表明,相对于纯铜纳米颗粒催化剂,利用导电炭黑增加颗粒间距离后,铜纳米颗粒的局部CO浓度和局部pH升高,有利于乙酸生成路径。团队进一步耦合外部反应条件(CO压力和KOH电解液浓度),实现了高选择性CO电解制乙酸。在优化反应条件下,乙酸法拉第效率和分电流密度分别达到77.5%和705mA/cm2,乙酸收率最高为82.3%。该研究将在介观尺度上影响物质传输的颗粒间距离效应拓展到工业相关条件下的CO电解反应,研究结果表明颗粒间距离可作为催化反应产物选择性的一种介观尺度描述符。
相关研究成果以“Interparticle Distance Matters for Selectivity Control in Industrially Relevant CO Electrolysis”为题,于近日发表在《美国化学会能源快报》(ACS Energy Letters)上。该工作的第一作者是523组已毕业硕士研究生荣佑文。上述工作得到国家重点研发计划、国家自然科学基金、辽宁省兴辽英才计划、我所创新基金等项目的支持。(文/图 荣佑文、高敦峰)
文章链接:https://doi.org/10.1021/acsenergylett.4c01203